PRODUCT DATA SHEET

Indium10.1 (T5-MC)

Pb-Free Solder Paste

Introduction

Indium10.1 is an air or nitrogen reflow, no-clean solder paste specifically formulated to accommodate the higher processing temperatures required by SnAgCu and other Pb-free alloy systems favored by the electronics industry to replace Pb-bearing solders. Indium10.1 offers exceptional stencil print transfer efficiency to work in the broadest range of processes. In addition, the high oxidation resistance of Indium10.1 virtually eliminates incomplete coalescence (graping) of small deposits and the head-in-pillow defect. Indium10.1 also offers extremely low, large ground-plane voiding found in ΩFN components.

Features

- Low-voiding on QFN, BGA, and CSP components
- Exceptional head-in-pillow resistance
- High transfer efficiency and low variation through small apertures (≤0.66 AR)
- Eliminates the graping phenomenon
- Outstanding RF shield metallization wetting

Alloys

Indium Corporation manufactures low-oxide spherical powder composed of a variety of Pb-free alloys that cover a broad range of melting temperatures. This document covers T5-MC powder sizes. The metal percent is the weight percent of the solder powder in the solder paste and is dependent upon the powder type and application.

Industry Standard Test Results and Classification				
Flux Classification	ROL1	Typical Solder Paste Viscosity for SAC305 T4.5 (Poise)	1,450	
Based on the testing IPC J-Standard-004E		Conforms with all		
Halogen-free per IEC 61249-2-21, Test Method EN14582	<900ppm CI <900ppm Br <1,500ppm Total	requirements from IPC J-Standard-005A.		

All information is for reference only.

Not to be used as incoming product specifications.

Standard Product Specifications

Alloy	Metal Load (Powder)
SAC305	
SAC387	88-88.5% (T5-MC)
SACm®*	(13 100)

^{*} For more information about SACm®, visit www.indium.com/SACm®.

Compatible Products

• Rework Flux: TACFlux® 089HF, TACFlux® 020B

• Cored Wire: CW-807

• Wave Flux: WF-9945, WF-9958

Note: Other products may be applicable. Please consult one of Indium Corporation's Technical Support Engineers.

Storage and Handling Procedures

Refrigerated storage will prolong the shelf life of solder paste. Solder paste packaged in cartridges should be stored tip down.

Storage Conditions (unopened containers)	Shelf Life
<10°C	6 months

Solder paste should be allowed to reach ambient working temperature prior to use. Generally, paste should be removed from refrigeration at least 2 hours before use. Actual time to reach thermal equilibrium will vary with container size. Paste temperature should be verified before use. Jars and cartridges should be labeled with date and time of opening.

Packaging

Indium10.1 is currently available in 500g jars or 600g cartridges. Packaging for enclosed print head systems is also readily available. Alternate packaging options may be available upon request.

^{**}The optimal metal loads are shown above. These can vary based upon geographic location and application/process needs.

PRODUCT DATA SHEET

Indium10.1 (T5-MC) Pb-Free Solder Paste

Printing

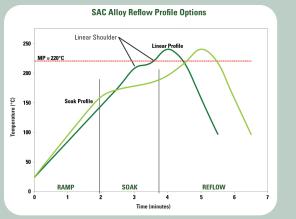
Stencil Design:

Electroformed and laser cut/electropolished stencils produce the best printing characteristics among stencil types. Stencil aperture design is a crucial step in optimizing the print process. The following are a few general recommendations:

- Discrete components—A 10–20% reduction of stencil aperture has significantly reduced or eliminated the occurrence of mid-chip solder beads. The "home plate" design is a common method for achieving this reduction.
- Fine-pitch components—A surface area reduction is recommended for apertures of 20mil pitch and finer. This reduction will help minimize solder balling and bridging that can lead to electrical shorts. The amount of reduction necessary is process-dependent (5–15% is common).
- For optimum transfer efficiency and release of the solder paste from the stencil apertures, industry standard aperture and aspect ratios should be adhered to.

Recommended Printer Operation

Solder Paste Bead Size	~20–25mm in diameter	
Print Speed	25-150mm/second	
Squeegee Pressure	0.018-0.027kg/mm of blade length	
Underside Stencil Wipe	Start at once per every 5 prints and decrease frequency until optimum value is reached	
Squeegee Type/Angle	Metal with appropriate length/~60 degrees	
Separation Speed	manufacturer's specifications	
Solder Paste Stencil Life		


Cleaning

Indium10.1 is designed for no-clean applications; however, the flux can be removed, if necessary, by using a commercially available flux residue remover.

Stencil Cleaning is best performed using isopropyl alcohol (IPA) as a solvent. Most commercially available non-water-based stencil cleaners work well.

Reflow

Recommended Profile:

The stated profile recommendations apply to most Pb-free alloys in the SnAgCu (SAC) alloy system, including SAC305 (96.5Sn/3.0Ag/0.5Cu). This can be used as a general guideline in establishing a reflow profile when using **Indium10.1** solder paste. Deviations from these recommendations are acceptable, and may be necessary, based on specific process requirements, including board size, thickness, and density. Start with the linear profile, then move to the optional soak profile if needed. The flat soak portion of the linear profile (linear shoulder) may also be eliminated.

Reflow Profile Details	SAC305 Parameters		Comments	
Reliow Frome Details	Recommended	Acceptable	Comments	
Ramp Profile (Average Ambient to Peak)— Not the Same as Maximum Rising Slope	1.0-1.5°C/second	0.5-2.5°C/second	To minimize solder balling, beading, hot slump	
ant Zana Brafila (antional)	20-60 seconds	30–120 seconds	May minimize BGA/CSP voiding Eliminating/reducing the soak zone <u>may</u> help to reduce HIP and graping	
Soak Zone Profile (optional)	140-160°C	140-170°C		
Time Above Liquidus (TAL)	45-60 seconds	30-100 seconds	Needed for good wetting/reliable solder joint	
Peak Temperature	230-260°C	230-262°C	As measured with thermocouple	
Cooling Ramp Rate	2-6°C/second	0.5-6°C/second	Rapid cooling promotes fine-grain structure	
Reflow Atmosphere	Air or N ₂		N ₂ preferred for small components	

All parameters are for reference only.

Modifications may be required to fit process and design.

This product data sheet is provided for general information only. It is not intended, and shall not be construed, to warrant or guarantee the performance of the products described which are sold subject exclusively to written warranties and limitations thereon included in product packaging and invoices. All Indium Corporation's products and solutions are designed to be commercially available unless specifically stated otherwise.

All of Indium Corporation's solder paste and preform manufacturing facilities are IATF 16949:2016 certified. Indium Corporation is an ISO 9001:2015 registered company.

Contact our engineers: askus@indium.com

Learn more: www.indium.com

