PRODUCT DATA SHEET

Durafuse® HR with Indium10.2HFA

High-Reliability Alloy Technology

Introduction

Durafuse® HR uses Indium Corporation's novel solder paste mixed-alloy system to enable low-voiding in alloys designed for high-reliability thermal cycling performance. The low-voiding alloy initiates wetting while the high-reliability elements enhance strength and durability of the solder joint. **Durafuse® HR** is ideal for applications requiring extended thermal cycling reliability beyond that available with traditional Pb-free alloys (-40°C/125°C and -40°C/150°C).

Features

- · High-temperature thermal cycling reliability
- Excellent voiding performance
- · Good shear strength
- Compatible with most SAC305 reflow profiles
- Compatible with standard PCB surface finishes, including ImSn, OSP, and ENIG

Flux Vehicle

Durafuse® HR is compatible with Indium10.2HFA. This flux vehicle is a halogen-free, no-clean solder paste designed to provide superior ICT and NWO capability. Indium10.2HFA has excellent stencil print transfer efficiency and response-to-pause performance. This paste provides the combination of high-reliability alloy thermal cycling performance alongside the benefits of Indium10.2HFA. This paste is compatible with both air and nitrogen atmosphere reflow and features clear flux residue and excellent wetting.

Standard Product Specifications

Alloy		Metal Load
Name	Composition	Type 4
Durafuse® HR	Patent Pending	88-90%

Industry Standard Test Results and Classification

Industry Standard Test Results and Classification					
Flux Classification	ROLO	Typical Solder Paste Viscosity for Indium10.2HFA T4 (Poise)	1,500		
Based on the testing required by IPC J-STD-004B.		Conforms with all			
Halogen-free per IEC 61249-2-21, Test Method EN14582	<900ppm Cl <900ppm Br <1,500ppm Total	requirements from IPC J-STD-005A.			

All information is for reference only.

Not to be used as incoming product specifications.

Storage and Handling Procedures

Refrigerated storage will prolong the shelf life of solder paste. Solder paste packaged in cartridges should be stored tip down.

Storage Conditions (unopened containers)	Shelf Life
<10°C	6 months

Solder paste should be allowed to reach ambient working temperature prior to use. Generally, paste should be removed from refrigeration at least 2 hours before use. Actual time to reach thermal equilibrium will vary with container size. Paste temperature should be verified before use. Jars and cartridges should be labeled with date and time of opening.

Complementary Products

• Rework Flux: TACFlux® 102HFA, TACFlux® 020B-RC

Note: Other products may be applicable. Please consult one of Indium Corporation's Technical Support Engineers.

Packaging

Durafuse® HR is currently available in 500g jars or 600g cartridges. Packaging for enclosed print head systems is also readily available. Alternate packaging options may be available upon request.

Technical Support

Indium Corporation's internationally experienced engineers provide in-depth technical assistance to our customers. Thoroughly knowledgeable in all facets of Materials Science as it applies to the electronics and semiconductor sectors, Technical Support Engineers provide expert advice in solder preforms, wire, ribbon, and paste. Indium Corporation's Technical Support Engineers provide rapid response to all technical inquiries.

Safety Data Sheets

Please refer to the SDS document within the product shipment, or contact our local team to receive a copy.

PRODUCT DATA SHEET

Durafuse® HR with Indium10.2HFA

High-Reliability Alloy Technology

Printing

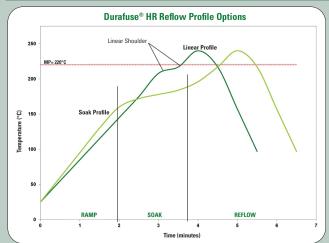
Stencil Design:

Electroformed and laser cut/electropolished stencils produce the best printing characteristics among stencil types. Stencil aperture design is a crucial step in optimizing the print process. The following are a few general recommendations:

- Discrete components—A 10–20% reduction of stencil aperture has significantly reduced or eliminated the occurrence of mid-chip solder beads. The "home plate" design is a common method for achieving this reduction.
- Fine-pitch components—A surface area reduction is recommended for apertures of 20mil pitch and finer. This reduction will help minimize solder balling and bridging that can lead to electrical shorts. The amount of reduction necessary is process-dependent (5–15% is common).
- For optimum transfer efficiency and release of the solder paste from the stencil apertures, industry standard aperture and aspect ratios should be adhered to.

Recommended Printer Operation

Solder Paste Bead Size	~20–25mm in diameter	
Print Speed	25-150mm/second	
Squeegee Pressure	0.018-0.027kg/mm of blade length	
Underside Stencil Wipe	Start at once per every 5 prints and decrease frequency until optimum value is reached	
Squeegee Type/Angle	Metal with appropriate length; 45 or 60° squeegees are typically used	
Separation Speed	5–20mm/second or per equipment manufacturer's specifications	
Solder Paste Stencil Life	>12 hours (at 30–60% RH and 22–28°C)	


Cleaning

Durafuse® HR is designed for no-clean applications; however, the flux can be removed, if necessary, by using a commercially available flux residue remover.

Stencil cleaning is best performed using isopropyl alcohol (IPA) as a solvent. Most commercially available non-water-based stencil cleaners work well.

Reflow

Recommended Profile:

This can be used as a general guideline in establishing a reflow profile when using **Durafuse® HR Solder Paste**. Deviations from these recommendations are acceptable, and may be necessary. When selecting between the recommended linear and soak profiles, please take board size, thickness, and density into consideration. The flat soak portion of the linear profile (linear shoulder) may be eliminated.

Reflow Profile Details	Durafuse® HR Parameters		Comments	
hellow Fluille Details	Recommended	Acceptable	Comments	
Ramp Profile (Average Ambient to Peak)— Not the Same as Maximum Rising Slope	1.0-1.5°C/second	0.5-2.5°C/second	To minimize solder balling, beading, hot slump	
Soak Zone Profile (Optional)	20-60 seconds	30-120 seconds	A soak profile may be used to diminish delta T between components.	
	140-160°C	140-170°C		
Time Above Liquidus (TAL, over 220°C)	45-60 seconds	30-100 seconds	Needed for good wetting/reliable solder joint	
Peak Temperature	230-260°C	230-262°C	As measured with thermocouple	
Cooling Ramp Rate	2-6°C/second	0.5-6.0°C/second	Rapid cooling promotes fine-grain structure	
Reflow Atmosphere	Air or N ₂		N ₂ preferred for small components	

Note: All parameters are for reference only. Modifications may be required to fit process and design.

This product data sheet is provided for general information only. It is not intended, and shall not be construed, to warrant or guarantee the performance of the products described which are sold subject exclusively to written warranties and limitations thereon included in product packaging and invoices. All Indium Corporation's products and solutions are designed to be commercially available unless specifically stated otherwise.

All of Indium Corporation's solder paste and preform manufacturing facilities are IATF 16949:2016 certified Indium Corporation is an ISO 9001:2015 registered company.

Contact our engineers: askus@indium.com Learn more: www.indium.com

