# PRODUCT DATA SHEET Indium6.5R

# Water-Soluble Pb-Free Solder Paste

#### Introduction

Indium6.5R is a versatile, water-soluble solder paste flux, formulated for air or nitrogen reflow. It is capable of Pb-free assembly processes with a wide reflow process window. This solder paste provides exceptional stencil printing performance, with long stencil life and excellent response-to-pause. Indium6.5R exhibits superior wetting to a variety of surface finishes and exhibits excellent low-voiding performance.

#### **Features**

- Lowest voiding water-soluble flux for solder paste:
  - Reduced largest voids
  - Fewer voids
  - Minimized voiding overall
- Exceptional printing process window:
  - Excellent response-to-pause
  - Long stencil life
  - Prints consistently at a wide range of speeds
- Wide reflow process window for profiling
- Excellent wetting on a variety of surface finishes
- · Maintains tack over time

### **Alloys**

Indium Corporation manufactures low-oxide spherical powder composed of a variety of alloys covering a broad range of melting temperatures. Type 4 powder is the standard offering with SnAgCu and SnAg alloy systems. The metal percent is the weight percent of the solder powder in the solder paste and is dependent upon the powder type and application. Standard product offerings are detailed in the following table.

#### **Bellcore and J-STD Tests and Results**

| Industry Standard Test Results and Classification     |      |                                                            |       |  |  |
|-------------------------------------------------------|------|------------------------------------------------------------|-------|--|--|
| Flux Classification                                   | ORH1 | Typical Solder<br>Paste Viscosity for<br>SAC305 T4 (Poise) | 2,000 |  |  |
| Based on the testing required by IPC J-Standard-004B. |      | Conforms with all requirements from IPC J-Standard-005A.   |       |  |  |

All information is for reference only.

Not to be used as incoming product specifications.

## **Standard Product Specification**

| Alloy<br>Grouping | Indalloy®# | Common<br>Name | Composition        | T4<br>(%) |  |
|-------------------|------------|----------------|--------------------|-----------|--|
|                   | 241        | SAC387         | 95.5Sn/3.8Ag/0.7Cu |           |  |
| Pb-Free<br>Alloys | 256        | SAC305         | 96.5Sn/3.0Ag/0.5Cu | 88-89     |  |
| .,                | 258        | SAC105         | 98.5Sn/1.0Ag/0.5Cu |           |  |

### **Storage and Handling Procedures**

Refrigerated storage will prolong the shelf life of solder paste. The preliminary shelf life of Indium6.5R is 6 months when stored at <10°C. When storing solder paste contained in syringes and cartridges, the packages should be stored with tip down.

Solder paste should be allowed to reach ambient working temperature prior to use and before opening the jar. Ideally, the working environment would be 23–28°C and 25–50% RH. Generally, paste should be removed from refrigeration at least 2 hours prior to use. Actual time to reach thermal equilibrium will vary with container size. Paste temperature should be verified before use. Jars and cartridges should be labeled with date and time of opening.

## **Packaging**

**Indium6.5R** is available in 500g jars or 600g cartridges. Packaging for enclosed print head systems is also readily available. Alternate packaging options may be available upon request.

## **Technical Support**

Indium Corporation's internationally experienced engineers provide in-depth technical assistance to our customers. Thoroughly knowledgeable in all facets of Materials Science as it applies to the electronics and semiconductor sectors, Technical Support Engineers provide expert advice in solder preforms, wire, ribbon, and paste. Indium Corporation's Technical Support Engineers provide rapid response to all technical inquiries.



#### PRODUCT DATA SHEET

# Indium6.5R Water-Soluble Pb-Free Solder Paste

## **Printing**

#### Stencil Design:

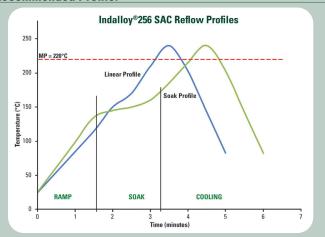
Electroformed and laser cut/electropolished stencils produce the best printing characteristics among stencil types. Stencil aperture design is a crucial step in optimizing the print process. The following are a few general recommendations:

- Discrete components—A 10–20% reduction of stencil aperture has significantly reduced or eliminated the occurrence of mid-chip solder beads. The "home plate" design is a common method for achieving this reduction.
- Fine-pitch components—A surface area reduction is recommended for apertures of 20mil pitch and finer. This reduction will help minimize solder balling and bridging that can lead to electrical shorts. The amount of reduction necessary is process-dependent (5–15% is common).
- For optimum transfer efficiency and release of the solder paste from the stencil apertures, industry standard aperture and aspect ratios should be adhered to.

## **Recommended Printer Operation**

| Solder Paste Bead Size    | 20-40mm in diameter                                                                       |  |
|---------------------------|-------------------------------------------------------------------------------------------|--|
| Print Speed               | 25-100mm/second                                                                           |  |
| Squeegee Pressure         | 0.018-0.027kg/mm of blade length                                                          |  |
| Underside Stencil Wipe    | Start at once per every 5 prints and decrease frequency until optimum value is determined |  |
| Solder Paste Stencil Life | >8 hours (<25–50% RH and 22–28°C)                                                         |  |

## Cleaning


**Residue Removal: Indium6.5R** flux residues are water-soluble and best removed by an inline or batch type cleaning process using spray pressure and heated DI water. A spray pressure of 60psi and a DI water temperature of 55°C can be used as a starting point. The optimal spray

pressure and temperature are a function of board size, complexity, and the efficiency of the cleaning equipment, and should be optimized accordingly. We recommend cleaning the flux residue 12 hours (or sooner) after reflow for optimal test performance. Electrical testing should be completed after the flux residue is removed.

Stencil Cleaning: This is best performed using an automated stencil cleaning system for both stencil and misprint cleaning to remove extraneous solder particles. Most commercially available stencil cleaners and isopropyl alcohol are acceptable.

#### Reflow

#### **Recommended Profile:**



The stated profile recommendations apply to most Pb-free alloys in the SnAgCu (SAC) alloy system, including SAC305 (96.5Sn/3.0Ag/0.5Cu). This can be used as a general guideline in establishing a reflow profile when using Indium6.5R Solder Paste. Deviations from these recommendations are acceptable, and may be necessary, based on specific process requirements, including board size, thickness, and density. Start with the linear profile, then move to the optional soak profile, if needed. The flat soak portion of the linear profile (linear shoulder) may also be eliminated.

| Reflow Profile Details                                                          | SAC305 Parameters     |                  | Comments                                                                             |  |
|---------------------------------------------------------------------------------|-----------------------|------------------|--------------------------------------------------------------------------------------|--|
| hellow Profile Details                                                          | Recommended           | Acceptable       | Comments                                                                             |  |
| Ramp Profile (Average Ambient to Peak)—<br>Not the Same as Maximum Rising Slope | 1.0-1.5°C/second      | 0.5-2.5°C/second | To minimize solder balling, beading, hot slump                                       |  |
| Soak Zone Profile (optional)                                                    | 20-60 seconds         | 30-120 seconds   | May minimize BGA/CSP voiding<br>Eliminating/reducing the soak zone may help to reduc |  |
|                                                                                 | 140-160°C             | 140-170°C        | HIP and graping                                                                      |  |
| Time Above Liquidus (TAL)                                                       | 45–60 seconds         | 30–100 seconds   | Needed for good wetting/reliable solder joint<br>As measured with thermocouple       |  |
| Peak Temperature                                                                | 230-260°C             | 230-262°C        |                                                                                      |  |
| Cooling Ramp Rate                                                               | 2-6°C/second          | 0.5-6°C/second   | Rapid cooling promotes fine-grain structure                                          |  |
| Reflow Atmosphere                                                               | Air or N <sub>2</sub> |                  | N <sub>2</sub> preferred for small components                                        |  |

All parameters are for reference only.

Modifications may be required to fit process and design.

This product data sheet is provided for general information only. It is not intended, and shall not be construed, to warrant or guarantee the performance of the products described which are sold subject exclusively to written warranties and limitations thereon included in product packaging and invoices. All Indium Corporation's products and solutions are designed to be commercially available unless specifically stated otherwise.

All of Indium Corporation's solder paste and preform manufacturing facilities are IATF 16949.2016 certified. Indium Corporation is an ISO 9001:2015 registered company.

Contact our engineers: askus@indium.com

Learn more: www.indium.com



