PRODUCT DATA SHEET Indium5.8LS

Pb-Free Solder Paste

Introduction

Indium5.8LS is a halide-free, no-clean solder paste specifically formulated for low flux spatter. This material is designed to accommodate the higher processing temperatures required by the SnAgCu, SnAg, and other Pb-free alloy systems in an air or nitrogen reflow atmosphere. This product formulation offers consistent, repeatable printing performance combined with long stencil and tack times to handle the rigors of today's high speed as well as high mix surface mount lines.

Features

- Ultra-low flux spattering (ideal for applications with Au finger connectors)
- Ultra-low solder beading
- · Halogen-free
- · Superior stencil life
- Outstanding print characteristics
- Extremely wide process window

Alloys

Indium Corporation manufactures low-oxide spherical powder composed of a variety of Pb-free alloys that cover a broad range of melting temperatures. Types 3 and 4 powders are standard offerings with SAC305 and SAC387 alloys. The metal percent is the weight percent of the solder powder in the solder paste and is dependent upon the powder type and application. Standard product offerings are detailed in the table below.

Standard Product Specifications

Alloy	Metal Load	
	Type 3	Type 4
96.5Sn/3.0Ag/0.5Cu (SAC305)	89.0%	88.5%

Packaging

Standard packaging for stencil printing applications includes 4oz jars and 6 or 12oz cartridges. Packaging for enclosed print head systems is also readily available. For dispensing applications, 10 and 30cc syringes are standard. Other packaging options may be available upon request.

Storage and Handling Procedures

Refrigerated storage is recommended throughout the shelf life of solder paste. The shelf life of **Indium5.8LS** is 6 months when stored at $<10^{\circ}$ C. Store syringes and cartridges tip down.

Remove solder paste from refrigeration at least 2 hours before use to allow the solder paste to reach an ambient working temperature. As the time to reach thermal equilibrium will vary with container size, verify solder paste temperature prior to use. Label jars and cartridges with the date and time of opening.

Compatible Products

• Rework Flux: TACFlux® 018

• Cored Wire: CW-807

• Wave Flux: WF-9945, WF-9958

Technical Support

Indium Corporation's internationally experienced engineers provide in-depth technical assistance to our customers. Thoroughly knowledgeable in all facets of Material Science as it applies to the electronics and semiconductor sectors, Technical Support Engineers provide expert advice in solder preforms, wire, ribbon, and paste. Indium Corporation's Technical Support Engineers provide rapid response to all technical inquiries.

Safety Data Sheets

The SDS for this product can be found online at http://www.indium.com/sds

Industry Standard Test Results and Classification					
Flux Classification	ROL0	Typical Solder Paste Viscosity SAC305 Indium5.8LS, T3, 89.0% SAC305 Indium5.8LS, T4, 88.5%	1,700 poise 1,600 poise		
Based on the testing required by the current version of IPC J-STD-004		Conforma with all requirements			
Halogen-free and low halogen per J-STD-004, IEC, and JEDEC requirements	<<1,000ppm CI <<1,000ppm Br	Conforms with all requirements from IPC J-STD-005			

All information is for reference only.

Not to be used as incoming product specifications.

PRODUCT DATA SHEET

Indium5.8LS Pb-Free Solder Paste

Printing

Stencil Design:

Electroformed and laser cut/electropolished stencils produce the best printing characteristics among stencil types. Stencil aperture design is a crucial step in optimizing the print process. The following are a few general recommendations:

- Discrete components—A 10-20% reduction of stencil aperture has significantly reduced or eliminated the occurrence of mid-chip solder beads. The "home plate" design is a common method for achieving this reduction.
- Fine-pitch components—A surface area reduction is recommended for apertures of 20mil pitch and finer. This reduction will help minimize solder balling and bridging that can lead to electrical shorts. The amount of reduction necessary is process-dependent (5-15% is common).
- For adequate release of solder paste from stencil apertures, a minimum aspect ratio of 1:5 is required. The aspect ratio is defined as the width of the aperture divided by the thickness of

Printer Operation

Solder Paste Bead Size	~20–25mm in diameter	
Print Speed	25-150mm/second	
Squeegee Pressure	0.018-0.027kg/mm of blade length	
Underside Stencil Wipe	Start at once per every 5 prints and decrease frequency until optimum value is reached	
Squeegee Type/Angle	Metal with appropriate length/~60 degrees	
Separation Speed	5-20mm/second or per equipment manufacturer's specifications	
Solder Paste Stencil Life	>8 hours (at 30–60% RH and 22–28°C)	

Cleaning

Indium5.8LS is designed for no-clean applications; however, the flux can be removed, if necessary, by using a commercially available flux residue remover.

Stencil Cleaning: This is best performed using isopropyl alcohol (IPA) as a solvent. Most commercially available stencil cleaners work well.

Reflow **Recommended Profile: SAC Alloy Reflow Profile Options**

The stated profile recommendations apply to most Pb-free alloys in the SnAgCu (SAC) alloy system, including SAC305 (96.5Sn/3.0Ag/0.5Cu). This can be used as a general guideline in establishing a reflow profile when using Indium5.8LS Solder Paste. Deviations from these recommendations are acceptable, and may be necessary, based on specific process requirements, including board size, thickness, and density. Start with the linear profile, then move to the optional soak profile, if needed. The flat soak portion of the linear profile (linear shoulder) may also be eliminated.

Deffers Durfile Details	SAC305 Parameters		Comments	
Reflow Profile Details	Recommended	Acceptable	Comments	
Ramp Profile (Average Ambient to Peak)— Not the Same as Maximum Rising Slope	1.0-1.5°C/second	0.5-2.5°C/second	To minimize solder balling, beading, hot slump	
Sock Zone Profile (entional)	20-60 seconds	30-120 seconds	May minimize BGA/CSP voiding Eliminating/reducing the soak zone may help to	
Soak Zone Profile (optional)	140-160°C	140-170°C	reduce HIP and graping	
Time Above Liquidus (TAL)	45–60 seconds	30–100 seconds	Needed for good wetting/reliable solder joint As measured with thermocouple	
Peak Temperature	230-260°C	230-262°C		
Cooling Ramp Rate	2-6°C/second	0.5-6°C/second	Rapid cooling promotes fine-grain structure	
Reflow Atmosphere	Air or N ₂		N ₂ preferred for small components	

All parameters are for reference only.

Modifications may be required to fit process and design.

This product data sheet is provided for general information only. It is not intended, and shall not be construed, to warrant or guarantee the performance of the products described which are sold subject exclusively to written warranties and limitations thereon included in product packaging and invoices. All Indium Corporation's products and solutions are designed to be commercially available unless specifically stated otherwise.

All of Indium Corporation's solder paste and preform manufacturing facilities are IATF 16949:2016 certified. Indium Corporation is an ISO 9001:2015 registered company.

Contact our engineers: askus@indium.com

Learn more: www.indium.com

