PRODUCT DATA SHEET NC-SM092H Solder Paste

Introduction

NC-SM092H is a halogen-free, air reflow, no-clean solder paste formulated for low flux spatter. It provides consistent fine-pitch paste deposition, and excellent stencil life and tack time. **NC-SM092H** has a hard flux residue and can accommodate reflow temperatures higher than typically required for many Pb-containing alloys. **NC-SM092H** meets or surpasses all ANSI/J-STD-004, -005 specifications and Bellcore test criteria.

Features

- Compatibility with common conformal coatings
- Clear, benign residue
- Superior stencil life
- Exceptional wetting in air reflow
- Outstanding print characteristics
- Halogen-free

Alloys

Indium Corporation manufactures low-oxide spherical powder composed of SnPb and SnPbAg in the industry standard Type 3 mesh size. Other, non-standard, mesh sizes are available upon request. The weight ratio of the flux/vehicle to the solder powder is referred to as the metal load and is typically in the range of 84–92% for standard alloy compositions.

Standard Product Specifications

Alloy	Metal Load		Mesh Size
Sn63 & Sn62	Printing 90%	Dispensing 85%	Type 3 -325/+500
	89.5%	84%	Type 4 -400/635

Bellcore and J-STD Tests and Results

Storage and Handling Procedures

Refrigerated storage will prolong the shelf life of solder paste. Solder paste packaged in cartridges should be stored tip down.

Storage Conditions (unopened containers)	Shelf Life	
<10°C	6 months	

Solder paste should be allowed to reach ambient working temperature prior to use. Generally, paste should be removed from refrigeration at least two hours before use. Actual time to reach thermal equilibrium will vary with container size. Paste temperature should be verified before use. Jars and cartridges should be labeled with date and time of opening.

Packaging

Standard packaging for stencil printing applications includes 4 oz. jars and 6 oz. or 12 oz. cartridges. Packaging for enclosed print head systems is also readily available. For dispensing applications, 10cc and 30cc syringes are standard. Other packaging options are available on request.

Compatible Products

- Rework Flux: PoP Flux 8.9HF-LV, TACFlux®018
- Cored Wire: CW-807
- Wave Flux: WF-9945, WF-9955, FP-500, NC-771

Note: Other products may be applicable. Please consult one of Indium Corporation's Technical Support Engineers.

Safety Data Sheets

Please refer to the SDS document within the product shipment, or contact our local team to receive a copy.

Test	Result	Test	Result
J-STD-004 (IPC-TM-650)		J-STD-005 (IPC-TM-650)	
Flux Type Classification	ROLO	Typical Solder Paste Viscosity	1,400 Poise
Flux Induced Corrosion (Copper Mirror)	Pass	(Sn63, 90%, Type 3) Malcom (10rpm)	
Presence of Halide Fluoride Spot Test	Pass	Typical Thixotropic Index; SSF (ICA Test)	-0.75
Elemental Analysis (Br, Cl, F)	0%	Slump Test	Pass
Post Reflow Flux Residue (ICA Test)	ux Residue (ICA Test) 46% Solder Ball Test		Pass
Corrosion	Pass	Typical Tackiness	32 grams
SIR	Pass	Wetting Test	Pass
Acid Value	128	BELLCORE GR-78	
All information is for reference only. Not to be used as incoming product specifications.		SIR	Pass
		Electromigration	Pass

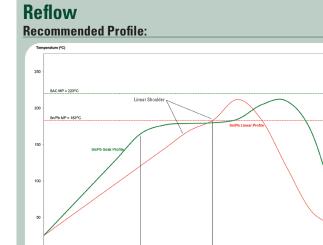
From One Engineer To Another[®]

PRODUCT DATA SHEET NC-SMQ92H Solder Paste

Printing

Stencil Design:

Electroformed and laser cut/electropolished stencils produce the best printing characteristics among stencil types. Stencil aperture design is a crucial step in optimizing the print process. The following are a few general recommendations:


- Discrete components A 10–20% reduction of stencil aperture has significantly reduced or eliminated the occurrence of mid-chip solder beads. The "home plate" design is a common method for achieving this reduction.
- Fine-pitch components A surface area reduction is recommended for apertures of 20mil pitch and finer. This reduction will help minimize solder balling and bridging that can lead to electrical shorts. The amount of reduction necessary is process dependent (5–15% is common).
- For adequate release of solder paste from stencil apertures, a minimum aspect ratio of 1.5 is suggested. The aspect ratio is defined as the width of the aperture divided by the thickness of the stencil.

Printer Operation				
Solder Paste Bead Size	~20–25mm in diameter			
Print Speed	25–100mm/second			
Squeegee Pressure	0.018–0.027Kg/mm of blade length			
Underside Stencil Wipe	Start at once per every 10–25 prints and decrease frequency until optimum value is reached			
Squeegee Type/Angle	Metal with appropriate length/ ~45–60 degrees			
Separation Speed	5–20mm/second or per equipment manufacturer's specifications			
Solder Paste Stencil Life	>12 hrs. (at 30–60% RH and 22–28°C)			

Cleaning

NC-SM092H is designed for no-clean applications. However, the flux can be removed if necessary by using a commercially available flux residue remover.

Stencil cleaning is best performed using isopropyl alcohol (IPA) as a solvent. Most commercially available non-water-based stencil cleaners work well.

The stated profile applies to Sn63 and Sn62 alloys. This can be used as a general guideline in establishing a reflow profile when using **NC-SM092H** solder paste. Deviations from these recommendations are acceptable, and may be necessary, based on specific process requirements, including board size, thickness, and density. Start with the linear profile, then move to the optional soak profile, if needed. The flat soak portion of the linear profile (linear shoulder) may also be eliminated.

Reflow Profile Details	Parameters		Comments	
Renow Prome Details	SnPb		Comments	
Ramp Profile (Average Ambient to Peak)— Not the Same as Maximum Rising Slope	0.5–1°C/Second Recommended	0.5–2.5°C/Second Acceptable	To minimize solder balling, beading, hot slump	
Soak Zone Profile (Optional)	30–90 Seconds Recommended	30–120 Seconds Acceptable	M	
	140–150°C/Recommended	130–170°C/Acceptable	May minimize BGA/CSP voiding	
Time Above Liquidus (TAL)	45–60 Seconds Recommended	30–100 Seconds Acceptable	Needed for good wetting/reliable solder joint As measured with thermocouple	
Peak Temperature	220–230°C/Recommended	195–233°C/Acceptable		
Cooling Ramp Rate	2–6°C/Second Recommended	0.5–6°C/Second Acceptable	Rapid cooling promotes fine grain structure	
Reflow Atmosphere	Air or N ₂		N ₂ typically preferred for small components	

Note: All parameters are for reference only. Modifications may be required to fit process and design.

This product data sheet is provided for general information only. It is not intended, and shall not be construed, to warrant or guarantee the performance of the products described which are sold subject exclusively to written warranties and limitations thereon included in product packaging and invoices. All Indium Corporation's products and solutions are designed to be commercially available unless specifically stated otherwise.

All of Indium Corporation's solder paste and preform manufacturing facilities are IATF 16949:2016 certified Indium Corporation is an ISO 9001:2015 registered company.

Contact our engineers: askus@indium.com Learn more: www.indium.com

ASIA +65 6268 8678 • CHINA +86 (0) 512 628 34900 • EUROPE +44 (0) 1908 580400 • USA +1 315 853 4900

©2024 Indium Corporation